Literatür



Pubmede girip  vitamin d yazdığınızda çok sayıda literatür karşınıza çıkar. Binlerce çalışma yapılmış olup D vitamininin faydalarını anlatmaktadır. Bunlardan bazılarına aşağıdaki linkleri tıklayarak ulaşabilirsiniz:

 

D vitamini eksikliği

 

 

Kalp krizi ile ilgisi

 

 

D vitamini eksikliği

 

 

Klinik uygulamalar

 

 

Kardiyometabolik hastalıkla ilgisi

 

 

 D vitamini alarmı 

 

 

Vitamin D geni yok edilmiş farelerden alınacak dersler

 

 

D VİTAMİNİNİN KANSERE KARŞI KORUYUCU OLDUĞUNU ANLATAN MAKALE İÇİN TIKLA 

 

 

D VİTAMİNİN MEME KANSERİ RİSKİNİ  AZALTTIĞI MAKALE İÇİN TIKLA 

 

 

D VİTAMİNİN PROSTAT, KOLON, OVER, MEME KANSERİNE KARŞI KORUYUCU OLDUĞU MAKALE İÇİN TIKLA 

 

 

HABERLER

 

 

D VİTAMİNİ EKSİKLİĞİ SALGINI

 

 

D VİTAMİNİ ALARMI

 

 

D VİTAMİNİ SEFERBERLİĞİ

 

 

D VİTAMİNİ İLE İLGİLİ YAPILMIŞ KLİNİK VE DENEYSEL ÇALIŞMALARDAN BAZILARI: 

Chick H, Palzell EJ, Hume EM1923 Studies of rickets in Vienna 1919–1922. Special Report 77. Medical Research Council.
Hess A1922 Influence of light on the prevention of rickets. Lancet 2:1222.
Huldshinsky K1919 Heilung von Rachitis durch künstliche Höhensonne. Dtsch Med Wochenschr 45:712–713.
McCollum EV, Simmonds N, Pitz W1916 The relation of unidentified dietary factors, the fat-soluble A and water-soluble B of the diet to the growth promoting properties of milk. J Biol Chem 27:33–38.
Mellanby E, Cantag MD1919 Experimental investigation on rickets. Lancet 196:407–412.
Park EA1923 The etiology of rickets. Physiol Rev 3:106–163.
Windaus A, Linsert O 1928 Vitamin D1. Ann Chem 465:148.
Bikle DD1992 Clinical counterpoint: vitamin D—new actions, new analogs, new therapeutic potential. Endocr Rev 13:765–784. [PubMed]
Bikle DD, Pillai S1993 Vitamin D, calcium, and epidermal differentiation. Endocr Rev 14:3–19. [PubMed]
Bouillon R, Okamura WH, Norman AW1995 Structure-function relationships in the vitamin D endocrine system. Endocr Rev 16:200–257. [PubMed]
Bouillon R2005 Vitamin D: from photosynthesis, metabolism, and action to clinical applications. In: DeGroot LJ, Jameson JL, eds. Endocrinology. Vol 2. Philadelphia: Elsevier Saunders; 1435–1463.
Brommage R, DeLuca HF1985 Evidence that 1,25-dihydroxyvitamin D3 is the physiologically active metabolite of vitamin D3. Endocr Rev 6:491–511. [PubMed]
DeLuca HF2004 Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr 80:1689S–1696S. [PubMed]
Fraser DR1980 Regulation of the metabolism of vitamin D. Physiol Rev 60:551–613. [PubMed]
Holick MF2007 Vitamin D deficiency. N Engl J Med 357:266–281. [PubMed]
Jurutka PW, Whitfield GK, Hsieh JC, Thompson PD, Haussler CA, Haussler MR2001 Molecular nature of the vitamin D receptor and its role in regulation of gene expression. Rev Endocr Metab Disord 2:203–216. [PubMed]
Malloy PJ, Pike JW, Feldman D1999 The vitamin D receptor and the syndrome of hereditary 1,25-dihydroxyvitamin D-resistant rickets. Endocr Rev 20:156–188. [PubMed]
Nagpal S, Na S, Rathnachalam R2005 Noncalcemic actions of vitamin D receptor ligands. Endocr Rev 26:662–687. [PubMed]
Norman AW, Roth J, Orci L1982 The vitamin D endocrine system: steroid metabolism, hormone receptors, and biological response (calcium binding proteins). Endocr Rev 3:331–366. [PubMed]
Norman AW2006 Minireview: vitamin D receptor: new assignments for an already busy receptor. Endocrinology 147:5542–5548. [PubMed]
Cheng JB, Levine MA, Bell NH, Mangelsdorf DJ, Russell DW2004 Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proc Natl Acad Sci USA 101:7711–7715. [PMC free article] [PubMed]
Andersson S, Davis DL, Dahlback H, Jornvall H, Russell DW1989 Cloning, structure, and expression of the mitochondrial cytochrome P-450 sterol 26-hydroxylase, a bile acid biosynthetic enzyme. J Biol Chem 264:8222–8229. [PubMed]
Fraser DR, Kodicek E1970 Unique biosynthesis by kidney of a biological active vitamin D metabolite. Nature 228:764–766. [PubMed]
Bikle DD2007 What is new in vitamin D: 2006–2007. Curr Opin Rheumatol 19:383–388. [PubMed]
Jones G2007 Expanding role for vitamin D in chronic kidney disease: importance of blood 25-OH-D levels and extra-renal 1α-hydroxylase in the classical and nonclassical actions of 1α,25-dihydroxyvitamin D(3). Semin Dial 20:316–324. [PubMed]
Overbergh L, Stoffels K, Waer M, Verstuyf A, Bouillon R, Mathieu C2006 Immune regulation of 25-hydroxyvitamin D-1α-hydroxylase in human monocytic THP1 cells: mechanisms of interferon-γ-mediated induction. J Clin Endocrinol Metab 91:3566–3574. [PubMed]
Prader A, Illig R, Heierle E1961 [An unusual form of primary vitamin D-resistant rickets with hypocalcemia and autosomal-dominant hereditary transmission: hereditary pseudo-deficiency rickets.]. Helv Paediatr Acta 16:452–468. [PubMed]
St Arnaud R, Messerlian S, Moir JM, Omdahl JL, Glorieux FH1997 The 25-hydroxyvitamin D 1-α-hydroxylase gene maps to the pseudovitamin D-deficiency rickets (PDDR) disease locus. J Bone Miner Res 12:1552–1559. [PubMed]
Takeyama K, Kitanaka S, Sato T, Kobori M, Yanagisawa J, Kato S1997 25-Hydroxyvitamin D3 1α-hydroxylase and vitamin D synthesis. Science 277:1827–1830. [PubMed]
Prosser DE, Jones G2004 Enzymes involved in the activation and inactivation of vitamin D. Trends Biochem Sci 29:664–673. [PubMed]
St Arnaud R1999 Targeted inactivation of vitamin D hydroxylases in mice. Bone 25:127–129. [PubMed]
St Arnaud R, Arabian A, Travers R, Barletta F, Raval-Pandya M, Chapin K, Depovere J, Mathieu C, Christakos S, Demay MB, Glorieux FH2000 Deficient mineralization of intramembranous bone in vitamin D-24-hydroxylase-ablated mice is due to elevated 1,25-dihydroxyvitamin D and not to the absence of 24,25-dihydroxyvitamin D. Endocrinology 141:2658–2666. [PubMed]
Albertson DG, Ylstra B, Segraves R, Collins C, Dairkee SH, Kowbel D, Kuo WL, Gray JW, Pinkel D2000 Quantitative mapping of amplicon structure by array CGH identifies CYP24 as a candidate oncogene. Nat Genet 25:144–146. [PubMed]
Wjst M, Altmuller J, Faus-Kessler T, Braig C, Bahnweg M, Andre E2006 Asthma families show transmission disequilibrium of gene variants in the vitamin D metabolism and signalling pathway. Respir Res 7:60. [PMC free article] [PubMed]
Ren S, Nguyen L, Wu S, Encinas C, Adams JS, Hewison M2005 Alternative splicing of vitamin D-24-hydroxylase: a novel mechanism for the regulation of extrarenal 1,25-dihydroxyvitamin D synthesis. J Biol Chem 280:20604–20611. [PubMed]
Singh RJ, Taylor RL, Reddy GS, Grebe SK2006 C-3 epimers can account for a significant proportion of total circulating 25-hydroxyvitamin D in infants, complicating accurate measurement and interpretation of vitamin D status. J Clin Endocrinol Metab 91:3055–3061. [PubMed]
Van Baelen H, Bouillon R, De Moor P1980 Vitamin D-binding protein (Gc-globulin) binds actin. J Biol Chem 255:2270–2272. [PubMed]
Verboven C, Rabijns A, De Maeyer M, Van Baelen H, Bouillon R, De Ranter C2002 A structural basis for the unique binding features of the human vitamin D-binding protein. Nat Struct Biol 9:131–136. [PubMed]
Cooke NE, Haddad JG1989 Vitamin D binding protein (Gc-globulin). Endocr Rev 10:294–307. [PubMed]
Nykjaer A, Dragun D, Walther D, Vorum H, Jacobsen C, Herz J, Melsen F, Christensen EI, Willnow TE1999 An endocytic pathway essential for renal uptake and activation of the steroid 25-(OH) vitamin D3. Cell 96:507–515. [PubMed]
Brumbaugh PF, Haussler MR1975 Specific binding of 1α,25-dihydroxycholecalciferol to nuclear components of chick intestine. J Biol Chem 250:1588–1594. [PubMed]
Holick MF, Schnoes HK, DeLuca HF, Suda T, Cousins RJ1971 Isolation and identification of 1,25-dihydroxycholecalciferol. A metabolite of vitamin D active in intestine. Biochemistry 10:2799–2804. [PubMed]
Lawson DE, Fraser DR, Kodicek E, Morris HR, Williams DH1971 Identification of 1,25-dihydroxycholecalciferol, a new kidney hormone controlling calcium metabolism. Nature 230:228–230. [PubMed]
Norman AW, Myrtle JF, Midgett RJ, Nowicki HG, Williams V, Popjak G1971 1,25-Dihydroxycholecalciferol: identification of the proposed active form of vitamin D3 in the intestine. Science 173:51–54. [PubMed]
McDonnell DP, Mangelsdorf DJ, Pike JW, Haussler MR, O'Malley BW1987 Molecular cloning of complementary DNA encoding the avian receptor for vitamin D. Science 235:1214–1217. [PubMed]
Clemens TL, Garrett KP, Zhou XY, Pike JW, Haussler MR, Dempster DW1988 Immunocytochemical localization of the 1,25-dihydroxyvitamin-D3 receptor in target cells. Endocrinology 122:1224–1230. [PubMed]
Haussler MR, Whitfield GK, Haussler CA, Hsieh JC, Thompson PD, Selznick SH, Dominguez CE, Jurutka PW1998 The nuclear vitamin D receptor: Biological and molecular regulatory properties revealed. J Bone Miner Res 13:325–349. [PubMed]
Stumpf WE, Sar M, Clark SA, DeLuca HF1982 Brain target sites for 1,25-dihydroxyvitamin D3. Science 215:1403–1405. [PubMed]
Eyles DW, Smith S, Kinobe R, Hewison M, McGrath JJ2005 Distribution of the vitamin D receptor and 1 α-hydroxylase in human brain. J Chem Neuroanat 29:21–30. [PubMed]
Gronemeyer H, Laudet V1995 Transcription factors 3: nuclear receptors. Protein Profile 2:1173–1308. [PubMed]
Moore DD, Kato S, Xie W, Mangelsdorf DJ, Schmidt DR, Xiao R, Kliewer SA2006 International Union of Pharmacology. LXII. The NR1H and NR1I receptors: constitutive androstane receptor, pregnene X receptor, farnesoid X receptor α, farnesoid X receptor β, liver X receptor α, liver X receptor β, and vitamin D receptor. Pharmacol Rev 58:742–759. [PubMed]
Rochel N, Moras D2006 Ligand binding domain of vitamin D receptors. Curr Top Med Chem 6:1229–1241. [PubMed]
Whitfield GK, Dang HT, Schluter SF, Bernstein RM, Bunag T, Manzon LA, Hsieh G, Dominguez CE, Youson JH, Haussler MR, Marchalonis JJ 2003 Cloning of a functional vitamin D receptor from the lamprey (Petromyzon marinus), an ancient vertebrate lacking a calcified skeleton and teeth. Endocrinology 144:2704–2716. [PubMed]
Robinson-Rechavi M, Carpentier AS, Duffraisse M, Laudet V2001 How many nuclear hormone receptors are there in the human genome? Trends Genet 17:554–556. [PubMed]
Sunn KL, Cock TA, Crofts LA, Eisman JA, Gardiner EM2001 Novel N-terminal variant of human VDR. Mol Endocrinol 15:1599–1609. [PubMed]
Esteban LM, Fong C, Amr D, Cock TA, Allison SJ, Flanagan JL, Liddle C, Eisman JA, Gardiner EM2005 Promoter-, cell-, and ligand-specific transactivation responses of the VDRB1 isoform. Biochem Biophys Res Commun 334:9–15. [PubMed]
Jurutka PW, Remus LS, Whitfield GK, Thompson PD, Hsieh JC, Zitzer H, Tavakkoli P, Galligan MA, Dang HT, Haussler CA, Haussler MR2000 The polymorphic N terminus in human vitamin D receptor isoforms influences transcriptional activity by modulating interaction with transcription factor IIB. Mol Endocrinol 14:401–420. [PubMed]
Haussler MR1986 Vitamin D receptors: nature and function. Annu Rev Nutr 6:527–562. [PubMed]
Haussler MR, McCain TA1977 Basic and clinical concepts related to vitamin D metabolism and action (first of two parts). N Engl J Med 297:974–983. [PubMed]
Hsieh JC, Shimizu Y, Minoshima S, Shimizu N, Haussler CA, Jurutka PW, Haussler MR1998 Novel nuclear localization signal between the two DNA-binding zinc fingers in the human vitamin D receptor. J Cell Biochem 70:94–109. [PubMed]
Rochel N, Wurtz JM, Mitschler A, Klaholz B, Moras D2000 The crystal structure of the nuclear receptor for vitamin D bound to its natural ligand. Mol Cell 5:173–179. [PubMed]
Hochberg Z2003 Introduction. Rickets—past and present. Endocr Dev 6:1–13. [PubMed]
Malloy PJ, Feldman D2003 Hereditary 1,25-dihydroxyvitamin D-resistant rickets. Endocr Dev 6:175–199. [PubMed]
Chen H, Hewison M, Hu B, Adams JS2003 Heterogeneous nuclear ribonucleoprotein (hnRNP) binding to hormone response elements: a cause of vitamin D resistance. Proc Natl Acad Sci USA 100:6109–6114. [PMC free article] [PubMed]
Feng W, Ribeiro RC, Wagner RL, Nguyen H, Apriletti JW, Fletterick RJ, Baxter JD, Kushner PJ, West BL1998 Hormone-dependent coactivator binding to a hydrophobic cleft on nuclear receptors. Science 280:1747–1749. [PubMed]
Fang Y, van Meurs JB, d'Alesio A, Jhamai M, Zhao H, Rivadeneira F, Hofman A, van Leeuwen JP, Jehan F, Pols HA, Uitterlinden AG2005 Promoter and 3′-untranslated-region haplotypes in the vitamin D receptor gene predispose to osteoporotic fracture: the Rotterdam study. Am J Hum Genet 77:807–823. [PMC free article] [PubMed]
Nejentsev S, Godfrey L, Snook H, Rance H, Nutland S, Walker NM, Lam AC, Guja C, Ionescu-Tirgoviste C, Undlien DE, Ronningen KS, Tuomilehto-Wolf E, Tuomilehto J, Newport MJ, Clayton DG, Todd JA2004 Comparative high-resolution analysis of linkage disequilibrium and tag single nucleotide polymorphisms between populations in the vitamin D receptor gene. Hum Mol Genet 13:1633–1639. [PubMed]
Arai H, Miyamoto K, Taketani Y, Yamamoto H, Iemori Y, Morita K, Tonai T, Nishisho T, Mori S, Takeda E1997 A vitamin D receptor gene polymorphism in the translation initiation codon: effect on protein activity and relation to bone mineral density in Japanese women. J Bone Miner Res 12:915–921. [PubMed]
Audi L, Marti G, Esteban C, Oyarzabal M, Chueca M, Gussinye M, Yeste D, Fernandez-Cancio M, Andaluz P, Carrascosa A2004 VDR gene polymorphism at exon 2 start codon (FokI) may have influenced type 1 diabetes mellitus susceptibility in two Spanish populations. Diabet Med 21:393–394. [PubMed]
Capoluongo E, Pitocco D, Concolino P, Santonocito C, Di Stasio E, d'Onofrio G, Manto A, Giardina B, Ghirlanda G, Ameglio F, Zuppi C2006 Slight association between type 1 diabetes and “ff” VDR FokI genotype in patients from the Italian Lazio region. Lack of association with diabetes complications. Clin Biochem 39:888–892. [PubMed]
Eerligh P, Koeleman BP, Dudbridge F, Jan BG, Roep BO, Giphart MJ2004 Functional genetic polymorphisms in cytokines and metabolic genes as additional genetic markers for susceptibility to develop type 1 diabetes. Genes Immun 5:36–40. [PubMed]
Fassbender WJ, Goertz B, Weismuller K, Steinhauer B, Stracke H, Auch D, Linn T, Bretzel RG2002 VDR gene polymorphisms are overrepresented in German patients with type 1 diabetes compared to healthy controls without effect on biochemical parameters of bone metabolism. Horm Metab Res 34:330–337. [PubMed]
Guja C, Marshall S, Welsh K, Merriman M, Smith A, Todd JA, Ionescu-Tirgoviste C2002 The study of CTLA-4 and vitamin D receptor polymorphisms in the Romanian type 1 diabetes population. J Cell Mol Med 6:75–81. [PubMed]
Gyorffy B, Vasarhelyi B, Krikovszky D, Madacsy L, Tordai A, Tulassay T, Szabo A2002 Gender-specific association of vitamin D receptor polymorphism combinations with type 1 diabetes mellitus. Eur J Endocrinol 147:803–808. [PubMed]
Koeleman BP, Valdigem G, Eerligh P, Giphart MJ, Roep BO2002 Seasonality of birth in patients with type 1 diabetes. Lancet 359:1246–1247. [PubMed]
Nejentsev S, Cooper JD, Godfrey L, Howson JM, Rance H, Nutland S, Walker NM, Guja C, Ionescu-Tirgoviste C, Savage DA, Undlien DE, Ronningen KS, Tuomilehto-Wolf E, Tuomilehto J, Gillespie KM, Ring SM, Strachan DP, Widmer B, Dunger D, Todd JA2004 Analysis of the vitamin D receptor gene sequence variants in type 1 diabetes. Diabetes 53:2709–2712. [PubMed]
Pani MA, Knapp M, Donner H, Braun J, Baur MP, Usadel KH, Badenhoop K2000 Vitamin D receptor allele combinations influence genetic susceptibility to type 1 diabetes in Germans. Diabetes 49:504–507. [PubMed]
Turpeinen H, Hermann R, Vaara S, Laine AP, Simell O, Knip M, Veijola R, Ilonen J2003 Vitamin D receptor polymorphisms: no association with type 1 diabetes in the Finnish population. Eur J Endocrinol 149:591–596. [PubMed]
Zemunik T, Skrabic V, Boraska V, Diklic D, Terzic IM, Capkun V, Peruzovic M, Terzic J2005 FokI polymorphism, vitamin D receptor, and interleukin-1 receptor haplotypes are associated with type 1 diabetes in the Dalmatian population. J Mol Diagn 7:600–604. [PMC free article] [PubMed]
Uitterlinden AG, Fang Y, van Meurs JB, Pols HA, van Leeuwen JP2004 Genetics and biology of vitamin D receptor polymorphisms. Gene 338:143–156. [PubMed]
Schrader M, Kahlen JP, Carlberg C1997 Functional characterization of a novel type of 1α,25-dihydroxyvitamin D3 response element identified in the mouse c-fos promoter. Biochem Biophys Res Commun 230:646–651. [PubMed]
Meyer MB, Watanuki M, Kim S, Shevde NK, Pike JW2006 The human transient receptor potential vanilloid type 6 distal promoter contains multiple vitamin D receptor binding sites that mediate activation by 1,25-dihydroxyvitamin D3 in intestinal cells. Mol Endocrinol 20:1447–1461. [PubMed]
Kim S, Shevde NK, Pike JW2005 1,25-Dihydroxyvitamin D3 stimulates cyclic vitamin D receptor/retinoid X receptor DNA-binding, co-activator recruitment, and histone acetylation in intact osteoblasts. J Bone Miner Res 20:305–317. [PubMed]
Glass CK, Rosenfeld MG2000 The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 14:121–141. [PubMed]
McKenna NJ, O'Malley BW2002 Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 108:465–474. [PubMed]
Polly P, Herdick M, Moehren U, Baniahmad A, Heinzel T, Carlberg C2000 VDR-Alien: a novel, DNA-selective vitamin D(3) receptor-corepressor partnership. FASEB J 14:1455–1463. [PubMed]
Tagami T, Lutz WH, Kumar R, Jameson JL1998 The interaction of the vitamin D receptor with nuclear receptor corepressors and coactivators. Biochem Biophys Res Commun 253:358–363. [PubMed]
Chakravarti D, LaMorte VJ, Nelson MC, Nakajima T, Schulman IG, Juguilon H, Montminy M, Evans RM1996 Role of CBP/P300 in nuclear receptor signalling. Nature 383:99–103. [PubMed]
Kamei Y, Xu L, Heinzel T, Torchia J, Kurokawa R, Gloss B, Lin SC, Heyman RA, Rose DW, Glass CK, Rosenfeld MG1996 A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85:403–414. [PubMed]
Rachez C, Freedman LP2000 Mechanisms of gene regulation by vitamin D(3) receptor: a network of coactivator interactions. Gene 246:9–21. [PubMed]
Spencer TE, Jenster G, Burcin MM, Allis CD, Zhou J, Mizzen CA, McKenna NJ, Onate SA, Tsai SY, Tsai MJ, O'Malley BW1997 Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389:194–198. [PubMed]
Burakov D, Wong CW, Rachez C, Cheskis BJ, Freedman LP2000 Functional interactions between the estrogen receptor and DRIP205, a subunit of the heteromeric DRIP coactivator complex. J Biol Chem 275:20928–20934. [PubMed]
Sharma D, Fondell JD2002 Ordered recruitment of histone acetyltransferases and the TRAP/mediator complex to thyroid hormone-responsive promoters in vivo. Proc Natl Acad Sci USA 99:7934–7939. [PMC free article] [PubMed]
Vanhooke JL, Benning MM, Bauer CB, Pike JW, DeLuca HF2004 Molecular structure of the rat vitamin D receptor ligand binding domain complexed with 2-carbon-substituted vitamin D3 hormone analogues and a LXXLL-containing coactivator peptide. Biochemistry 43:4101–4110. [PubMed]
Rachez C, Gamble M, Chang CP, Atkins GB, Lazar MA, Freedman LP2000 The DRIP complex and SRC-1/p160 coactivators share similar nuclear receptor binding determinants but constitute functionally distinct complexes. Mol Cell Biol 20:2718–2726. [PMC free article] [PubMed]
Rosenfeld MG, Lunyak VV, Glass CK2006 Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes Dev 20:1405–1428. [PubMed]
Kitagawa H, Fujiki R, Yoshimura K, Mezaki Y, Uematsu Y, Matsui D, Ogawa S, Unno K, Okubo M, Tokita A, Nakagawa T, Ito T, Ishimi Y, Nagasawa H, Matsumoto T, Yanagisawa J, Kato S2003 The chromatin-remodeling complex WINAC targets a nuclear receptor to promoters and is impaired in Williams syndrome. Cell 113:905–917. [PubMed]
Li B, Carey M, Workman JL2007 The role of chromatin during transcription. Cell 128:707–719. [PubMed]
Villagra A, Cruzat F, Carvallo L, Paredes R, Olate J, van Wijnen AJ, Stein GS, Lian JB, Stein JL, Imbalzano AN, Montecino M2006 Chromatin remodeling and transcriptional activity of the bone-specific osteocalcin gene require CCAAT/enhancer-binding protein β-dependent recruitment of SWI/SNF activity. J Biol Chem 281:22695–22706. [PubMed]
Baudino TA, Kraichely DM, Jefcoat Jr SC, Winchester SK, Partridge NC, MacDonald PN1998 Isolation and characterization of a novel coactivator protein, NCoA-62, involved in vitamin D-mediated transcription. J Biol Chem 273:16434–16441. [PubMed]
Savkur RS, Bramlett KS, Stayrook KR, Nagpal S, Burris TP2005 Coactivation of the human vitamin D receptor by the peroxisome proliferator-activated receptor γ coactivator-1α. Mol Pharmacol 68:511–517. [PubMed]
Dusso AS2003 Vitamin D receptor: mechanisms for vitamin D resistance in renal failure. Kidney Int Suppl 85:S6–S9. [PubMed]
Kim MS, Fujiki R, Murayama A, Kitagawa H, Yamaoka K, Yamamoto Y, Mihara M, Takeyama K, Kato S2007 1α,25(OH)2D3-induced transrepression by vitamin D receptor through E-box-type elements in the human parathyroid hormone gene promoter. Mol Endocrinol 21:334–342. [PubMed]
Murayama A, Takeyama K, Kitanaka S, Kodera Y, Hosoya T, Kato S1998 The promoter of the human 25-hydroxyvitamin D3 1 α-hydroxylase gene confers positive and negative responsiveness to PTH, calcitonin, and 1 α,25(OH)2D3. Biochem Biophys Res Commun 249:11–16. [PubMed]
Murayama A, Kim MS, Yanagisawa J, Takeyama K, Kato S2004 Transrepression by a liganded nuclear receptor via a bHLH activator through co-regulator switching. EMBO J 23:1598–1608. [PMC free article] [PubMed]
Zehnder D, Bland R, Williams MC, McNinch RW, Howie AJ, Stewart PM, Hewison M2001 Extrarenal expression of 25-hydroxyvitamin d(3)-1 α-hydroxylase. J Clin Endocrinol Metab 86:888–894. [PubMed]
Demay MB, Kiernan MS, DeLuca HF, Kronenberg HM1992 Sequences in the human parathyroid hormone gene that bind the 1,25-dihydroxyvitamin D3 receptor and mediate transcriptional repression in response to 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci USA 89:8097–8101. [PMC free article] [PubMed]
Russell J, Ashok S, Koszewski NJ1999 Vitamin D receptor interactions with the rat parathyroid hormone gene: synergistic effects between two negative vitamin D response elements. J Bone Miner Res 14:1828–1837. [PubMed]
Fujiki R, Kim MS, Sasaki Y, Yoshimura K, Kitagawa H, Kato S2005 Ligand-induced transrepression by VDR through association of WSTF with acetylated histones. EMBO J 24:3881–3894. [PMC free article] [PubMed]
Turunen MM, Dunlop TW, Carlberg C, Vaisanen S2007 Selective use of multiple vitamin D response elements underlies the 1α,25-dihydroxyvitamin D3-mediated negative regulation of the human CYP27B1 gene. Nucleic Acids Res 35:2734–2747. [PMC free article] [PubMed]
Alroy I, Towers TL, Freedman LP1995 Transcriptional repression of the interleukin-2 gene by vitamin D3: direct inhibition of NFATp/AP-1 complex formation by a nuclear hormone receptor. Mol Cell Biol 15:5789–5799. [PMC free article] [PubMed]
D'Ambrosio D, Cippitelli M, Cocciolo MG, Mazzeo D, Di Lucia P, Lang R, Sinigaglia F, Panina-Bordignon P1998 Inhibition of IL-12 production by 1,25-dihydroxyvitamin D3. Involvement of NF-κB down-regulation in transcriptional repression of the p40 gene. J Clin Invest 101:252–262. [PMC free article] [PubMed]
Duque G, Macoritto M, Kremer R2004 Vitamin D treatment of senescence accelerated mice (SAM-P/6) induces several regulators of stromal cell plasticity. Biogerontology 5:421–429. [PubMed]
Eelen G, Verlinden L, Van Camp M, Van Hummelen P, Marchal K, De Moor B, Mathieu C, Carmeliet G, Bouillon R, Verstuyf A2004 The effects of 1α,25-dihydroxyvitamin D3 on the expression of DNA replication genes. J Bone Miner Res 19:133–146. [PubMed]
Farach-Carson MC, Xu Y2002 Microarray detection of gene expression changes induced by 1,25(OH)(2)D(3) and a Ca(2+) influx-activating analog in osteoblastic ROS 17/2.8 cells. Steroids 67:467–470. [PubMed]
Pochampally RR, Ylostalo J, Penfornis P, Matz RR, Smith JR, Prockop DJ2007 Histamine receptor H1 and dermatopontin: new downstream targets of the vitamin D receptor. J Bone Miner Res 22:1338–1349. [PubMed]
Schwartz Z, Graham EJ, Wang L, Lossdorfer S, Gay I, Johnson-Pais TL, Carnes DL, Sylvia VL, Boyan BD2005 Phospholipase A2 activating protein (PLAA) is required for 1α,25(OH)2D3 signaling in growth plate chondrocytes. J Cell Physiol 203:54–70. [PubMed]
Verlinden L, Eelen G, Van Hellemont R, Engelen K, Beullens I, Van Camp M, Marchal K, Mathieu C, Bouillon R, Verstuyf A2007 1α,25-Dihydroxyvitamin D3-induced down-regulation of the checkpoint proteins, Chk1 and Claspin, is mediated by the pocket proteins p107 and p130. J Steroid Biochem Mol Biol 103:411–415. [PubMed]
Li X, Zheng W, Li YC2003 Altered gene expression profile in the kidney of vitamin D receptor knockout mice. J Cell Biochem 89:709–719. [PubMed]
Kutuzova GD, DeLuca HF2004 Gene expression profiles in rat intestine identify pathways for 1,25-dihydroxyvitamin D(3) stimulated calcium absorption and clarify its immunomodulatory properties. Arch Biochem Biophys 432:152–166. [PubMed]
Kutuzova GD, DeLuca HF2007 1,25-Dihydroxyvitamin D3 regulates genes responsible for detoxification in intestine. Toxicol Appl Pharmacol 218:37–44. [PubMed]
Bosse Y, Maghni K, Hudson TJ2007 1α,25-Dihydroxy-vitamin D3 stimulation of bronchial smooth muscle cells induces autocrine, contractility, and remodeling processes. Physiol Genomics 29:161–168. [PubMed]
Shalhoub V, Shatzen E, Henley C, Boedigheimer M, McNinch J, Manoukian R, Damore M, Fitzpatrick D, Haas K, Twomey B, Kiaei P, Ward S, Lacey DL, Martin D2006 Calcification inhibitors and Wnt signaling proteins are implicated in bovine artery smooth muscle cell calcification in the presence of phosphate and vitamin D sterols. Calcif Tissue Int 79:431–442. [PubMed]
Wu-Wong JR, Nakane M, Ma J, Ruan X, Kroeger PE2007 VDR-mediated gene expression patterns in resting human coronary artery smooth muscle cells. J Cell Biochem 100:1395–1405. [PubMed]
Guzey M, Luo J, Getzenberg RH2004 Vitamin D3 modulated gene expression patterns in human primary normal and cancer prostate cells. J Cell Biochem 93:271–285. [PubMed]
Ikezoe T, Gery S, Yin D, O'Kelly J, Binderup L, Lemp N, Taguchi H, Koeffler HP2005 CCAAT/enhancer-binding protein delta: a molecular target of 1,25-dihydroxyvitamin D3 in androgen-responsive prostate cancer LNCaP cells. Cancer Res 65:4762–4768. [PubMed]
Khanim FL, Gommersall LM, Wood VH, Smith KL, Montalvo L, O'Neill LP, Xu Y, Peehl DM, Stewart PM, Turner BM, Campbell MJ2004 Altered SMRT levels disrupt vitamin D3 receptor signalling in prostate cancer cells. Oncogene 23:6712–6725. [PubMed]
Krishnan AV, Shinghal R, Raghavachari N, Brooks JD, Peehl DM, Feldman D2004 Analysis of vitamin D-regulated gene expression in LNCaP human prostate cancer cells using cDNA microarrays. Prostate 59:243–251. [PubMed]
Moreno J, Krishnan AV, Peehl DM, Feldman D2006 Mechanisms of vitamin D-mediated growth inhibition in prostate cancer cells: inhibition of the prostaglandin pathway. Anticancer Res 26:2525–2530. [PubMed]
Peehl DM, Shinghal R, Nonn L, Seto E, Krishnan AV, Brooks JD, Feldman D2004 Molecular activity of 1,25-dihydroxyvitamin D3 in primary cultures of human prostatic epithelial cells revealed by cDNA microarray analysis. J Steroid Biochem Mol Biol 92:131–141. [PubMed]
Qiao S, Tuohimaa P2004 The role of long-chain fatty-acid-CoA ligase 3 in vitamin D3 and androgen control of prostate cancer LNCaP cell growth. Biochem Biophys Res Commun 319:358–368. [PubMed]
Kawata H, Kamiakito T, Takayashiki N, Tanaka A2006 Vitamin D3 suppresses the androgen-stimulated growth of mouse mammary carcinoma SC-3 cells by transcriptional repression of fibroblast growth factor 8. J Cell Physiol 207:793–799. [PubMed]
Lyakhovich A, Aksenov N, Pennanen P, Miettinen S, Ahonen MH, Syvala H, Ylikomi T, Tuohimaa P2000 Vitamin D induced up-regulation of keratinocyte growth factor (FGF-7/KGF) in MCF-7 human breast cancer cells. Biochem Biophys Res Commun 273:675–680. [PubMed]
Swami S, Raghavachari N, Muller UR, Bao YP, Feldman D2003 Vitamin D growth inhibition of breast cancer cells: gene expression patterns assessed by cDNA microarray. Breast Cancer Res Treat 80:49–62. [PubMed]
Song JH, Kim JM, Kim SH, Kim HJ, Lee JJ, Sung MH, Hwang SY, Kim TS2003 Comparison of the gene expression profiles of monocytic versus granulocytic lineages of HL-60 leukemia cell differentiation by DNA microarray analysis. Life Sci 73:1705–1719. [PubMed]
Suzuki T, Tazoe H, Taguchi K, Koyama Y, Ichikawa H, Hayakawa S, Munakata H, Isemura M2006 DNA microarray analysis of changes in gene expression induced by 1,25-dihydroxyvitamin D3 in human promyelocytic leukemia HL-60 cells. Biomed Res 27:99–109. [PubMed]
Wood RJ, Tchack L, Angelo G, Pratt RE, Sonna LA2004 DNA microarray analysis of vitamin D-induced gene expression in a human colon carcinoma cell line. Physiol Genomics 17:122–129. [PubMed]
Zhang X, Li P, Bao J, Nicosia SV, Wang H, Enkemann SA, Bai W2005 Suppression of death receptor-mediated apoptosis by 1,25-dihydroxyvitamin D3 revealed by microarray analysis. J Biol Chem 280:35458–35468. [PMC free article] [PubMed]
Wang TT, Tavera-Mendoza LE, Laperriere D, Libby E, MacLeod NB, Nagai Y, Bourdeau V, Konstorum A, Lallemant B, Zhang R, Mader S, White JH2005 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol 19:2685–2695. [PubMed]
Griffin MD, Xing N, Kumar R2004 Gene expression profiles in dendritic cells conditioned by 1α,25-dihydroxyvitamin D3 analog. J Steroid Biochem Mol Biol 89–90:443–448. [PubMed]
Mahon BD, Wittke A, Weaver V, Cantorna MT2003 The targets of vitamin D depend on the differentiation and activation status of CD4 positive T cells. J Cell Biochem 89:922–932. [PubMed]
Sigmundsdottir H, Pan J, Debes GF, Alt C, Habtezion A, Soler D, Butcher EC2007 DCs metabolize sunlight-induced vitamin D3 to ‘program’ T cell attraction to the epidermal chemokine CCL27. Nat Immunol 8:285–293. [PubMed]
Cantorna MT, Mahon BD2005 D-hormone and the immune system. J Rheumatol Suppl 76:11–20. [PubMed]
Spach KM, Pedersen LB, Nashold FE, Kayo T, Yandell BS, Prolla TA, Hayes CE2004 Gene expression analysis suggests that 1,25-dihydroxyvitamin D3 reverses experimental autoimmune encephalomyelitis by stimulating inflammatory cell apoptosis. Physiol Genomics 18:141–151. [PubMed]
Rahman A, Hershey S, Ahmed S, Nibbelink K, Simpson RU2007 Heart extracellular matrix gene expression profile in the vitamin D receptor knockout mice. J Steroid Biochem Mol Biol 103:416–419. [PubMed]
Byrne B, Welsh J2007 Identification of novel mediators of vitamin D signaling and 1,25(OH)2D3 resistance in mammary cells. J Steroid Biochem Mol Biol 103:703–707. [PMC free article] [PubMed]
Ellison TI, Dowd DR, MacDonald PN2005 Calmodulin-dependent kinase IV stimulates vitamin D receptor-mediated transcription. Mol Endocrinol 19:2309–2319. [PubMed]
Kousteni S, Bellido T, Plotkin LI, O'Brien CA, Bodenner DL, Han L, Han K, DiGregorio GB, Katzenellenbogen JA, Katzenellenbogen BS, Roberson PK, Weinstein RS, Jilka RL, Manolagas SC2001 Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 104:719–730. [PubMed]
Norman AW, Mizwicki MT, Norman DP2004 Steroid-hormone rapid actions, membrane receptors and a conformational ensemble model. Nat Rev Drug Discov 3:27–41. [PubMed]
Zhu Y, Rice CD, Pang Y, Pace M, Thomas P2003 Cloning, expression, and characterization of a membrane progestin receptor and evidence it is an intermediary in meiotic maturation of fish oocytes. Proc Natl Acad Sci USA 100:2231–2236. [PMC free article] [PubMed]
Norman AW, Okamura WH, Hammond MW, Bishop JE, Dormanen MC, Bouillon R, Van Baelen H, Ridall AL, Daane E, Khoury R, Farach-Carson MC1997 Comparison of 6-s-cis- and 6-s-trans-locked analogs of 1α,25-dihydroxyvitamin D3 indicates that the 6-s-cis conformation is preferred for rapid nongenomic biological responses and that neither 6-s-cis- nor 6-s-trans-locked analogs are preferred for genomic biological responses. Mol Endocrinol 11:1518–1531. [PubMed]
Zanello LP, Norman AW2004 Rapid modulation of osteoblast ion channel responses by 1α,25(OH)2-vitamin D3 requires the presence of a functional vitamin D nuclear receptor. Proc Natl Acad Sci USA 101:1589–1594. [PMC free article] [PubMed]
Yoshizawa T, Handa Y, Uematsu Y, Takeda S, Sekine K, Yoshihara Y, Kawakami T, Arioka K, Sato H, Uchiyama Y, Masushige S, Fukamizu A, Matsumoto T, Kato S1997 Mice lacking the vitamin D receptor exhibit impaired bone formation, uterine hypoplasia and growth retardation after weaning. Nat Genet 16:391–396. [PubMed]
Li YC, Pirro AE, Amling M, Delling G, Baron R, Bronson R, Demay MB1997 Targeted ablation of the vitamin D receptor: an animal model of vitamin D-dependent rickets type II with alopecia. Proc Natl Acad Sci USA 94:9831–9835. [PMC free article] [PubMed]
Van Cromphaut SJ, Dewerchin M, Hoenderop JG, Stockmans I, Van Herck E, Kato S, Bindels RJ, Collen D, Carmeliet P, Bouillon R, Carmeliet G2001 Duodenal calcium absorption in vitamin D receptor-knockout mice: functional and molecular aspects. Proc Natl Acad Sci USA 98:13324–13329. [PMC free article] [PubMed]
Erben RG, Soegiarto DW, Weber K, Zeitz U, Lieberherr M, Gniadecki R, Moller G, Adamski J, Balling R2002 Deletion of deoxyribonucleic acid binding domain of the vitamin D receptor abrogates genomic and nongenomic functions of vitamin D. Mol Endocrinol 16:1524–1537. [PubMed]
Dardenne O, Prud'homme J, Arabian A, Glorieux FH, St Arnaud R2001 Targeted inactivation of the 25-hydroxyvitamin D(3)-1(α)-hydroxylase gene (CYP27B1) creates an animal model of pseudovitamin D-deficiency rickets. Endocrinology 142:3135–3141. [PubMed]
Panda DK, Miao D, Tremblay ML, Sirois J, Farookhi R, Hendy GN, Goltzman D2001 Targeted ablation of the 25-hydroxyvitamin D 1α-hydroxylase enzyme: evidence for skeletal, reproductive, and immune dysfunction. Proc Natl Acad Sci USA 98:7498–7503. [PMC free article] [PubMed]
Dardenne O, Prud'homme J, Hacking SA, Glorieux FH, St Arnaud R2003 Correction of the abnormal mineral ion homeostasis with a high-calcium, high-phosphorus, high-lactose diet rescues the PDDR phenotype of mice deficient for the 25-hydroxyvitamin D-1α-hydroxylase (CYP27B1). Bone 32:332–340. [PubMed]
Amling M, Priemel M, Holzmann T, Chapin K, Rueger JM, Baron R, Demay MB1999 Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses. Endocrinology 140:4982–4987. [PubMed]
Dardenne O, Prudhomme J, Hacking SA, Glorieux FH, St Arnaud R2003 Rescue of the pseudo-vitamin D deficiency rickets phenotype of CYP27B1-deficient mice by treatment with 1,25-dihydroxyvitamin D3: biochemical, histomorphometric, and biomechanical analyses. J Bone Miner Res 18:637–643. [PubMed]
Hoenderop JG, Dardenne O, van Abel M, van der Kemp AW, van Os CH, Arnaud R, Bindels RJ2002 Modulation of renal Ca2+ transport protein genes by dietary Ca2+ and 1,25-dihydroxyvitamin D3 in 25-hydroxyvitamin D3–1α-hydroxylase knockout mice. FASEB J 16:1398–1406. [PubMed]
Li YC, Amling M, Pirro AE, Priemel M, Meuse J, Baron R, Delling G, Demay MB1998 Normalization of mineral ion homeostasis by dietary means prevents hyperparathyroidism, rickets, and osteomalacia, but not alopecia in vitamin D receptor-ablated mice. Endocrinology 139:4391–4396. [PubMed]
Rowling MJ, Gliniak C, Welsh J, Fleet JC2007 High dietary vitamin D prevents hypocalcemia and osteomalacia in CYP27B1 knockout mice. J Nutr 137:2608–2615. [PMC free article] [PubMed]
Song Y, Kato S, Fleet JC2003 Vitamin D receptor (VDR) knockout mice reveal VDR-independent regulation of intestinal calcium absorption and ECaC2 and calbindin D9k mRNA. J Nutr 133:374–380. [PubMed]
Balsan S, Garabedian M, Larchet M, Gorski AM, Cournot G, Tau C, Bourdeau A, Silve C, Ricour C1986 Long-term nocturnal calcium infusions can cure rickets and promote normal mineralization in hereditary resistance to 1,25-dihydroxyvitamin D. J Clin Invest 77:1661–1667. [PMC free article] [PubMed]
Hochberg Z, Tiosano D, Even L1992 Calcium therapy for calcitriol-resistant rickets. J Pediatr 121:803–808. [PubMed]
Kitanaka S, Takeyama K, Murayama A, Sato T, Okumura K, Nogami M, Hasegawa Y, Niimi H, Yanagisawa J, Tanaka T, Kato S1998 Inactivating mutations in the 25-hydroxyvitamin D3 1α-hydroxylase gene in patients with pseudovitamin D-deficiency rickets. N Engl J Med 338:653–661. [PubMed]
Hoenderop JG, Nilius B, Bindels RJ2005 Calcium absorption across epithelia. Physiol Rev 85:373–422. [PubMed]
Hoenderop JG, Hartog A, Stuiver M, Doucet A, Willems PH, Bindels RJ2000 Localization of the epithelial Ca(2+) channel in rabbit kidney and intestine. J Am Soc Nephrol 11:1171–1178. [PubMed]
Dostal LA, Toverud SU1984 Effect of vitamin D3 on duodenal calcium absorption in vivo during early development. Am J Physiol 246:G528–G534. [PubMed]
Halloran BP, DeLuca HF1981 Appearance of the intestinal cytosolic receptor for 1,25-dihydroxyvitamin D3 during neonatal development in the rat. J Biol Chem 256:7338–7342. [PubMed]
Bolt MJ, Cao LP, Kong J, Sitrin MD, Li YC2005 Vitamin D receptor is required for dietary calcium-induced repression of calbindin-D9k expression in mice. J Nutr Biochem 16:286–290. [PubMed]
Li YC, Pirro AE, Demay MB1998 Analysis of vitamin D-dependent calcium-binding protein messenger ribonucleic acid expression in mice lacking the vitamin D receptor. Endocrinology 139:847–851. [PubMed]
Van Cromphaut SJ, Rummens K, Stockmans I, Van Herck E, Dijcks FA, Ederveen AG, Carmeliet P, Verhaeghe J, Bouillon R, Carmeliet G2003 Intestinal calcium transporter genes are upregulated by estrogens and the reproductive cycle through vitamin D receptor-independent mechanisms. J Bone Miner Res 18:1725–1736. [PubMed]
Li YC, Bolt MJ, Cao LP, Sitrin MD2001 Effects of vitamin D receptor inactivation on the expression of calbindins and calcium metabolism. Am J Physiol Endocrinol Metab 281:E558–E564. [PubMed]
Benn BS, Ajibade D, Porta A, Dhawan P, Hediger M, Peng JB, Jiang Y, Oh GT, Jeung EB, Lieben L, Bouillon R, Carmeliet G, Christakos S2008 Active intestinal calcium transport in the absence of transient receptor potential vanilloid type 6 and calbindin-d9k. Endocrinology 149:3196–3205. [PMC free article] [PubMed]
Bianco SD, Peng JB, Takanaga H, Suzuki Y, Crescenzi A, Kos CH, Zhuang L, Freeman MR, Gouveia CH, Wu J, Luo H, Mauro T, Brown EM, Hediger MA2007 Marked disturbance of calcium homeostasis in mice with targeted disruption of the Trpv6 calcium channel gene. J Bone Miner Res 22:274–285. [PubMed]
Kutuzova GD, Akhter S, Christakos S, Vanhooke J, Kimmel-Jehan C, DeLuca HF2006 Calbindin D(9k) knockout mice are indistinguishable from wild-type mice in phenotype and serum calcium level. Proc Natl Acad Sci USA 103:12377–12381. [PMC free article] [PubMed]
Lee GS, Lee KY, Choi KC, Ryu YH, Paik SG, Oh GT, Jeung EB2007 Phenotype of a calbindin-d9k gene knockout is compensated for by the induction of other calcium transporter genes in a mouse model. J Bone Miner Res 22:1968–1978. [PubMed]
Fujita H, Sugimoto K, Inatomi S, Maeda T, Osanai M, Uchiyama Y, Yamamoto Y, Wada T, Kojima T, Yokozaki H, Yamashita T, Kato S, Sawada N, Chiba H2008 Tight junction proteins claudin-2 and -12 are critical for vitamin D-dependent Ca2+ absorption between enterocytes. Mol Biol Cell 19:1912–1921. [PMC free article] [PubMed]
Hoenderop JG, van Leeuwen JP, van der Eerden BC, Kersten FF, van der Kemp AW, Merillat AM, Waarsing JH, Rossier BC, Vallon V, Hummler E, Bindels RJ2003 Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5. J Clin Invest 112:1906–1914. [PMC free article] [PubMed]
Renkema KY, Nijenhuis T, van der Eerden BC, van der Kemp AW, Weinans H, van Leeuwen JP, Bindels RJ, Hoenderop JG2005 Hypervitaminosis D mediates compensatory Ca2+ hyperabsorption in TRPV5 knockout mice. J Am Soc Nephrol 16:3188–3195. [PubMed]
Airaksinen MS, Eilers J, Garaschuk O, Thoenen H, Konnerth A, Meyer M1997 Ataxia and altered dendritic calcium signaling in mice carrying a targeted null mutation of the calbindin D28k gene. Proc Natl Acad Sci USA 94:1488–1493. [PMC free article] [PubMed]
Margolis DS, Kim D, Szivek JA, Lai LW, Lien YH2006 Functionally improved bone in calbindin-D28k knockout mice. Bone 39:477–484. [PMC free article] [PubMed]
Sooy K, Kohut J, Christakos S2000 The role of calbindin and 1,25dihydroxyvitamin D3 in the kidney. Curr Opin Nephrol Hypertens 9:341–347. [PubMed]
Zheng W, Xie Y, Li G, Kong J, Feng JQ, Li YC2004 Critical role of calbindin-D28k in calcium homeostasis revealed by mice lacking both vitamin D receptor and calbindin-D28k. J Biol Chem 279:52406–52413. [PubMed]
Gkika D, Hsu YJ, van der Kemp AW, Christakos S, Bindels RJ, Hoenderop JG2006 Critical role of the epithelial Ca2+ channel TRPV5 in active Ca2+ reabsorption as revealed by TRPV5/calbindin-D28K knockout mice. J Am Soc Nephrol 17:3020–3027. [PubMed]
Koushik SV, Wang J, Rogers R, Moskophidis D, Lambert NA, Creazzo TL, Conway SJ2001 Targeted inactivation of the sodium-calcium exchanger (Ncx1) results in the lack of a heartbeat and abnormal myofibrillar organization. FASEB J 15:1209–1211. [PubMed]
Okunade GW, Miller ML, Pyne GJ, Sutliff RL, O'Connor KT, Neumann JC, Andringa A, Miller DA, Prasad V, Doetschman T, Paul RJ, Shull GE2004 Targeted ablation of plasma membrane Ca2+-ATPase (PMCA) 1 and 4 indicates a major housekeeping function for PMCA1 and a critical role in hyperactivated sperm motility and male fertility for PMCA4. J Biol Chem 279:33742–33750. [PubMed]
Reuter H, Henderson SA, Han T, Ross RS, Goldhaber JI, Philipson KD2002 The Na+-Ca2+ exchanger is essential for the action of cardiac glycosides. Circ Res 90:305–308. [PubMed]
Wakimoto K, Kobayashi K, Kuro O, Yao A, Iwamoto T, Yanaka N, Kita S, Nishida A, Azuma S, Toyoda Y, Omori K, Imahie H, Oka T, Kudoh S, Kohmoto O, Yazaki Y, Shigekawa M, Imai Y, Nabeshima Y, Komuro I2000 Targeted disruption of Na+/Ca2+ exchanger gene leads to cardiomyocyte apoptosis and defects in heartbeat. J Biol Chem 275:36991–36998. [PubMed]
Johnson JA, Grande JP, Roche PC, Kumar R1996 Ontogeny of the 1,25-dihydroxyvitamin D3 receptor in fetal rat bone. J Bone Miner Res 11:56–61. [PubMed]
Kovacs CS, Woodland ML, Fudge NJ, Friel JK2005 The vitamin D receptor is not required for fetal mineral homeostasis or for the regulation of placental calcium transfer in mice. Am J Physiol Endocrinol Metab 289:E133–E144. [PubMed]
Donohue MM, Demay MB2002 Rickets in VDR null mice is secondary to decreased apoptosis of hypertrophic chondrocytes. Endocrinology 143:3691–3694. [PubMed]
Sabbagh Y, Carpenter TO, Demay MB2005 Hypophosphatemia leads to rickets by impairing caspase-mediated apoptosis of hypertrophic chondrocytes. Proc Natl Acad Sci USA 102:9637–9642. [PMC free article] [PubMed]
Masuyama R, Stockmans I, Torrekens S, Van Looveren R, Maes C, Carmeliet P, Bouillon R, Carmeliet G2006 Vitamin D receptor in chondrocytes promotes osteoclastogenesis and regulates FGF23 production in osteoblasts. J Clin Invest 116:3150–3159. [PMC free article] [PubMed]
Panda DK, Miao D, Bolivar I, Li J, Huo R, Hendy GN, Goltzman D2004 Inactivation of the 25-hydroxyvitamin D 1α-hydroxylase and vitamin D receptor demonstrates independent and interdependent effects of calcium and vitamin D on skeletal and mineral homeostasis. J Biol Chem 279:16754–16766. [PubMed]
Yagishita N, Yamamoto Y, Yoshizawa T, Sekine K, Uematsu Y, Murayama H, Nagai Y, Krezel W, Chambon P, Matsumoto T, Kato S2001 Aberrant growth plate development in VDR/RXR γ double null mutant mice. Endocrinology 142:5332–5341. [PubMed]
Takeda S, Yoshizawa T, Nagai Y, Yamato H, Fukumoto S, Sekine K, Kato S, Matsumoto T, Fujita T1999 Stimulation of osteoclast formation by 1,25-dihydroxyvitamin D requires its binding to vitamin D receptor (VDR) in osteoblastic cells: studies using VDR knockout mice. Endocrinology 140:1005–1008. [PubMed]
Masuyama R, Nakaya Y, Tanaka S, Tsurukami H, Nakamura T, Watanabe S, Yoshizawa T, Kato S, Suzuki K2001 Dietary phosphorus restriction reverses the impaired bone mineralization in vitamin D receptor knockout mice. Endocrinology 142:494–497. [PubMed]
Cianferotti L, Demay MB2007 VDR-mediated inhibition of DKK1 and SFRP2 suppresses adipogenic differentiation of murine bone marrow stromal cells. J Cell Biochem 101:80–88. [PubMed]
Gardiner EM, Baldock PA, Thomas GP, Sims NA, Henderson NK, Hollis B, White CP, Sunn KL, Morrison NA, Walsh WR, Eisman JA2000 Increased formation and decreased resorption of bone in mice with elevated vitamin D receptor in mature cells of the osteoblastic lineage. FASEB J 14:1908–1916. [PubMed]
Sooy K, Sabbagh Y, Demay MB2005 Osteoblasts lacking the vitamin D receptor display enhanced osteogenic potential in vitro. J Cell Biochem 94:81–87. [PubMed]
Tanaka H, Seino Y2004 Direct action of 1,25-dihydroxyvitamin D on bone: VDRKO bone shows excessive bone formation in normal mineral condition. J Steroid Biochem Mol Biol 89–90:343–345. [PubMed]
Yamamoto Y, Yoshizawa T, Fukuda T, Kawano H, Nakamura T, Yamada T, Karsenty G, Kato AA genetic evidence of direct VDR function in osteoblasts. Generation and analysis of osteoblast-specific VDR KO mice. p S26 (Abstract)
Xue Y, Karaplis AC, Hendy GN, Goltzman D, Miao D2005 Genetic models show that parathyroid hormone and 1,25-dihydroxyvitamin D3 play distinct and synergistic roles in postnatal mineral ion homeostasis and skeletal development. Hum Mol Genet 14:1515–1528. [PubMed]
Miao D, He B, Karaplis AC, Goltzman D2002 Parathyroid hormone is essential for normal fetal bone formation. J Clin Invest 109:1173–1182. [PMC free article] [PubMed]
Xue Y, Zhang Z, Karaplis AC, Hendy GN, Goltzman D, Miao D2005 Exogenous PTH-related protein and PTH improve mineral and skeletal status in 25-hydroxyvitamin D-1α-hydroxylase and PTH double knockout mice. J Bone Miner Res 20:1766–1777. [PubMed]
Xue Y, Karaplis AC, Hendy GN, Goltzman D, Miao D2006 Exogenous 1,25-dihydroxyvitamin D3 exerts a skeletal anabolic effect and improves mineral ion homeostasis in mice that are homozygous for both the 1α-hydroxylase and parathyroid hormone null alleles. Endocrinology 147:4801–4810. [PubMed]
Bacic D, Lehir M, Biber J, Kaissling B, Murer H, Wagner CA2006 The renal Na+/phosphate cotransporter NaPi-IIa is internalized via the receptor-mediated endocytic route in response to parathyroid hormone. Kidney Int 69:495–503. [PubMed]
Tenenhouse HS2005 Regulation of phosphorus homeostasis by the type iia na/phosphate cotransporter. Annu Rev Nutr 25:197–214. [PubMed]
Hattenhauer O, Traebert M, Murer H, Biber J1999 Regulation of small intestinal Na-P(i) type IIb cotransporter by dietary phosphate intake. Am J Physiol 277:G756–G762. [PubMed]
Xu H, Bai L, Collins JF, Ghishan FK2002 Age-dependent regulation of rat intestinal type IIb sodium-phosphate cotransporter by 1,25-(OH)(2) vitamin D(3). Am J Physiol Cell Physiol 282:C487–C493. [PubMed]
Capuano P, Radanovic T, Wagner CA, Bacic D, Kato S, Uchiyama Y, St Arnoud R, Murer H, Biber J2005 Intestinal and renal adaptation to a low-Pi diet of type II NaPi cotransporters in vitamin D receptor- and 1αOHase-deficient mice. Am J Physiol Cell Physiol 288:C429–C434. [PubMed]
Segawa H, Kaneko I, Yamanaka S, Ito M, Kuwahata M, Inoue Y, Kato S, Miyamoto K2004 Intestinal Na-P(i) cotransporter adaptation to dietary P(i) content in vitamin D receptor null mice. Am J Physiol Renal Physiol 287:F39–F47. [PubMed]
Larsson T, Marsell R, Schipani E, Ohlsson C, Ljunggren O, Tenenhouse HS, Juppner H, Jonsson KB2004 Transgenic mice expressing fibroblast growth factor 23 under the control of the α1(I) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis. Endocrinology 145:3087–3094. [PubMed]
Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, Fujita T, Nakahara K, Fukumoto S, Yamashita T2004 FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 19:429–435. [PubMed]
Ben Dov IZ, Galitzer H, Lavi-Moshayoff V, Goetz R, Kuro O, Mohammadi M, Sirkis R, Naveh-Many T, Silver J2007 The parathyroid is a target organ for FGF23 in rats. J Clin Invest 117:4003–4008. [PMC free article] [PubMed]
Kolek OI, Hines ER, Jones MD, LeSueur LK, Lipko MA, Kiela PR, Collins JF, Haussler MR, Ghishan FK2005 1α,25-Dihydroxyvitamin D3 upregulates FGF23 gene expression in bone: the final link in a renal-gastrointestinal-skeletal axis that controls phosphate transport. Am J Physiol Gastrointest Liver Physiol 289:G1036–G1042. [PubMed]
Shimada T, Yamazaki Y, Takahashi M, Hasegawa H, Urakawa I, Oshima T, Ono K, Kakitani M, Tomizuka K, Fujita T, Fukumoto S, Yamashita T2005 Vitamin D receptor-independent FGF23 actions in regulating phosphate and vitamin D metabolism. Am J Physiol Renal Physiol 289:F1088–F1095. [PubMed]
Yu X, Sabbagh Y, Davis SI, Demay MB, White KE2005 Genetic dissection of phosphate- and vitamin D-mediated regulation of circulating Fgf23 concentrations. Bone 36:971–977. [PubMed]
Inoue Y, Segawa H, Kaneko I, Yamanaka S, Kusano K, Kawakami E, Furutani J, Ito M, Kuwahata M, Saito H, Fukushima N, Kato S, Kanayama HO, Miyamoto K2005 Role of the vitamin D receptor in FGF23 action on phosphate metabolism. Biochem J 390:325–331. [PMC free article] [PubMed]
Miyamoto K, Ito M, Kuwahata M, Kato S, Segawa H2005 Inhibition of intestinal sodium-dependent inorganic phosphate transport by fibroblast growth factor 23. Ther Apher Dial 9:331–335. [PubMed]
Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, Fukumoto S, Tomizuka K, Yamashita T2004 Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest 113:561–568. [PMC free article] [PubMed]
Sitara D, Razzaque MS, St Arnaud R, Huang W, Taguchi T, Erben RG, Lanske B2006 Genetic ablation of vitamin D activation pathway reverses biochemical and skeletal anomalies in Fgf-23-null animals. Am J Pathol 169:2161–2170. [PMC free article] [PubMed]
Razzaque MS, Sitara D, Taguchi T, St Arnaud R, Lanske B2006 Premature aging-like phenotype in fibroblast growth factor 23 null mice is a vitamin D-mediated process. FASEB J 20:720–722. [PMC free article] [PubMed]
Hesse M, Frohlich LF, Zeitz U, Lanske B, Erben RG2007 Ablation of vitamin D signaling rescues bone, mineral, and glucose homeostasis in Fgf-23 deficient mice. Matrix Biol 26:75–84. [PubMed]
Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R, Nabeshima YI1997 Mutation of the mouse Klotho gene leads to a syndrome resembling ageing. Nature 390:45–51. [PubMed]
Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T2006 Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444:770–774. [PubMed]
Razzaque MS, Lanske B2006 Hypervitaminosis D and premature aging: lessons learned from Fgf23 and Klotho mutant mice. Trends Mol Med 12:298–305. [PubMed]
Tsujikawa H, Kurotaki Y, Fujimori T, Fukuda K, Nabeshima Y2003 Klotho, a gene related to a syndrome resembling human premature aging, functions in a negative regulatory circuit of vitamin D endocrine system. Mol Endocrinol 17:2393–2403. [PubMed]
Tenenhouse HS, Gauthier C, Chau H, St Arnaud R2004 1α-Hydroxylase gene ablation and Pi supplementation inhibit renal calcification in mice homozygous for the disrupted Npt2a gene. Am J Physiol Renal Physiol 286:F675–F681. [PubMed]
Bronckers AL, Price PA, Schrijvers A, Bervoets TJ, Karsenty G1998 Studies of osteocalcin function in dentin formation in rodent teeth. Eur J Oral Sci 106:795–807. [PubMed]
Lezot F, Descroix V, Mesbah M, Hotton D, Blin C, Papagerakis P, Mauro N, Kato S, MacDougall M, Sharpe P, Berdal A2002 Cross-talk between Msx/Dlx homeobox genes and vitamin D during tooth mineralization. Connect Tissue Res 43:509–514. [PubMed]
Berdal A, Bailleul-Forestier I, Davideau J-L, Lezot F2005 Dento-alveolar bone complex and vitamin D. In: Feldman D, Pike JW, Glorieux FH, eds. Vitamin D. San Diego: Elsevier Academic Press; 599–607.
Zhang X, Rahemtulla FG, MacDougall MJ, Thomas HF2007 Vitamin D receptor deficiency affects dentin maturation in mice. Arch Oral Biol 52:1172–1179. [PubMed]
Krall EA, Wehler C, Garcia RI, Harris SS, Dawson-Hughes B2001 Calcium and vitamin D supplements reduce tooth loss in the elderly. Am J Med 111:452–456. [PubMed]
Bikle DD, Oda Y, Xie Z2004 Calcium and 1,25(OH)2D: interacting drivers of epidermal differentiation. J Steroid Biochem Mol Biol 89–90:355–360. [PubMed]
Bikle DD2004 Vitamin D regulated keratinocyte differentiation. J Cell Biochem 92:436–444. [PubMed]
Xie Z, Komuves L, Yu QC, Elalieh H, Ng DC, Leary C, Chang S, Crumrine D, Yoshizawa T, Kato S, Bikle DD2002 Lack of the vitamin D receptor is associated with reduced epidermal differentiation and hair follicle growth. J Invest Dermatol 118:11–16. [PubMed]
Sakai Y, Demay MB2000 Evaluation of keratinocyte proliferation and differentiation in vitamin D receptor knockout mice. Endocrinology 141:2043–2049. [PubMed]
Reichrath J, Schilli M, Kerber A, Bahmer FA, Czarnetzki BM, Paus R1994 Hair follicle expression of 1,25-dihydroxyvitamin D3 receptors during the murine hair cycle. Br J Dermatol 131:477–482. [PubMed]
Stumpf WE, Sar M, Reid FA, Tanaka Y, DeLuca HF1979 Target cells for 1,25-dihydroxyvitamin D3 in intestinal tract, stomach, kidney, skin, pituitary, and parathyroid. Science 206:1188–1190. [PubMed]
Sakai Y, Kishimoto J, Demay MB2001 Metabolic and cellular analysis of alopecia in vitamin D receptor knockout mice. J Clin Invest 107:961–966. [PMC free article] [PubMed]
Dlugosz A1999 The Hedgehog and the hair follicle: a growing relationship. J Clin Invest 104:851–853. [PMC free article] [PubMed]
Chen CH, Sakai Y, Demay MB2001 Targeting expression of the human vitamin D receptor to the keratinocytes of vitamin D receptor null mice prevents alopecia. Endocrinology 142:5386–5389. [PubMed]
Kong J, Li XJ, Gavin D, Jiang Y, Li YC2002 Targeted expression of human vitamin D receptor in the skin promotes the initiation of the postnatal hair follicle cycle and rescues the alopecia in vitamin D receptor null mice. J Invest Dermatol 118:631–638. [PubMed]
Skorija K, Cox M, Sisk JM, Dowd DR, MacDonald PN, Thompson CC, Demay MB2005 Ligand-independent actions of the vitamin D receptor maintain hair follicle homeostasis. Mol Endocrinol 19:855–862. [PubMed]
Miller J, Djabali K, Chen T, Liu Y, Ioffreda M, Lyle S, Christiano AM, Holick M, Cotsarelis G2001 Atrichia caused by mutations in the vitamin D receptor gene is a phenocopy of generalized atrichia caused by mutations in the hairless gene. J Invest Dermatol 117:612–617. [PubMed]
Hsieh JC, Sisk JM, Jurutka PW, Haussler CA, Slater SA, Haussler MR, Thompson CC2003 Physical and functional interaction between the vitamin D receptor and hairless corepressor, two proteins required for hair cycling. J Biol Chem 278:38665–38674. [PubMed]
Xie Z, Chang S, Oda Y, Bikle DD2006 Hairless suppresses vitamin D receptor transactivation in human keratinocytes. Endocrinology 147:314–323. [PubMed]
Gat U, DasGupta R, Degenstein L, Fuchs E1998 De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated β-catenin in skin. Cell 95:605–614. [PubMed]
Huelsken J, Vogel R, Erdmann B, Cotsarelis G, Birchmeier W2001 β-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105:533–545. [PubMed]
Lo CC, Prowse DM, Watt FM2004 Transient activation of β-catenin signalling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumours. Development 131:1787–1799. [PubMed]
Merrill BJ, Gat U, DasGupta R, Fuchs E2001 Tcf3 and Lef1 regulate lineage differentiation of multipotent stem cells in skin. Genes Dev 15:1688–1705. [PMC free article] [PubMed]
Cianferotti L, Cox M, Skorija K, Demay MB2007 Vitamin D receptor is essential for normal keratinocyte stem cell function. Proc Natl Acad Sci USA 104:9428–9433. [PMC free article] [PubMed]
Beaudoin III GM, Sisk JM, Coulombe PA, Thompson CC2005 Hairless triggers reactivation of hair growth by promoting Wnt signaling. Proc Natl Acad Sci USA 102:14653–14658. [PMC free article] [PubMed]
Taylor G, Lehrer MS, Jensen PJ, Sun TT, Lavker RM2000 Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 102:451–461. [PubMed]
Bikle DD, Chang S, Crumrine D, Elalieh H, Man MQ, Choi EH, Dardenne O, Xie Z, Arnaud RS, Feingold K, Elias PM2004 25-Hydroxyvitamin D 1α-hydroxylase is required for optimal epidermal differentiation and permeability barrier homeostasis. J Invest Dermatol 122:984–992. [PubMed]
Huang DC, Papavasiliou V, Rhim JS, Horst RL, Kremer R2002 Targeted disruption of the 25-hydroxyvitamin D3 1α-hydroxylase gene in ras-transformed keratinocytes demonstrates that locally produced 1α,25-dihydroxyvitamin D3 suppresses growth and induces differentiation in an autocrine fashion. Mol Cancer Res 1:56–67. [PubMed]
Colston K, Colston MJ, Feldman D1981 1,25-dihydroxyvitamin D3 and malignant melanoma: the presence of receptors and inhibition of cell growth in culture. Endocrinology 108:1083–1086. [PubMed]
Abe E, Miyaura C, Sakagami H, Takeda M, Konno K, Yamazaki T, Yoshiki S, Suda T1981 Differentiation of mouse myeloid leukemia cells induced by 1 α,25-dihydroxyvitamin D3. Proc Natl Acad Sci USA 78:4990–4994. [PMC free article] [PubMed]
Park WH, Seol JG, Kim ES, Jung CW, Lee CC, Binderup L, Koeffler HP, Kim BK, Lee YY2000 Cell cycle arrest induced by the vitamin D(3) analog EB1089 in NCI-H929 myeloma cells is associated with induction of the cyclin-dependent kinase inhibitor p27. Exp Cell Res 254:279–286. [PubMed]
Studzinski GP, Rathod B, Wang QM, Rao J, Zhang F1997 Uncoupling of cell cycle arrest from the expression of monocytic differentiation markers in HL60 cell variants. Exp Cell Res 232:376–387. [PubMed]
Palmer HG, Gonzalez-Sancho JM, Espada J, Berciano MT, Puig I, Baulida J, Quintanilla M, Cano A, de Herreros AG, Lafarga M, Munoz A2001 Vitamin D(3) promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of β-catenin signaling. J Cell Biol 154:369–387. [PMC free article] [PubMed]
Tong WM, Kallay E, Hofer H, Hulla W, Manhardt T, Peterlik M, Cross HS1998 Growth regulation of human colon cancer cells by epidermal growth factor and 1,25-dihydroxyvitamin D3 is mediated by mutual modulation of receptor expression. Eur J Cancer 34:2119–2125. [PubMed]
Vink-van Wijngaarden T, Pols HA, Buurman CJ, Birkenhager JC, van Leeuwen JP1996 Inhibition of insulin- and insulin-like growth factor-I-stimulated growth of human breast cancer c